Follow this link to skip to the main content
NASA Ames Research Center
Send



Kepler-38b

Tables and captions below from discovery paper: arxiv.org/pdf/1208.3712v1.pdf

Kepler-38 System Diagram

Kepler-38 system diagram

Fig. 6.— Top: A scaled, face-on view of the orbits in the Kepler-38 system is shown. The configuration shown is correct for the reference epoch given in Table 1. On this scale the stars and the planet are too small to be seen and are represented by the small boxes. The labels A, B, and b denote the primary star, the secondary star, and the planet, respectively. Bottom: The region between the vertical lines in the top diagram is shown on an expanded scale with an orientation corresponding to what would be seen from Earth. Transits of b across A are observed, and occultations of b due to A occur but are not observable given the noise level. Transits of b across B and occultations of b due to B do not occur in this configuration.

System Parameters

Kepler-38 system parameters from discovery paper Table 5

Kepler-38 system parameters from discovery paper Table 6

Light curve (Quarters 1-11)

Fig. 1.— Top: the SAP light curves of Kepler-38. The colors denote the season and hence the spacecraft orientation with black for Q1, Q5, and Q9, red for Q2, Q6, and Q10, green for Q3, Q7, and Q11, and blue for Q4 and Q8. Bottom: The normalized light curve with the instrumental trends removed. One primary eclipse was missed in the relatively long interval between the end of Q7 and the start of Q8.
Kepler 38 Light curve from discovery paper figure 1

8 Transit Events

Fig. 3.— The unbinned Kepler light curves with the eight transit events and the best-fitting model are shown. The orbital phase of each event is indicated. Note the correlation between the width of the transit event and the orbital phase. Transits near primary eclipse (φ = 0) are narrow, whereas transits near the secondary eclipse (φ ≈ 0.5) are wide.
Kepler 38 Light curves from discovery paper figure 3