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ABSTRACT

Transit photometry is a promising method for discovering extrasolar planets as small as Earth from space-
based photometers, and several near-term photometric missions are on the drawing board. In particular,
NASA’s recently selected Kepler mission is devoted primarily to detecting extrasolar planets. The success of
these efforts depends in part on the ability to detect transit signatures against the inherent photometric varia-
bility of the target stars. While other noise sources such as shot noise and CCD noise are under the control of
the instrument designers, this one is not. The photometric variability of solar-like stars presents a fundamen-
tal lower limit to the minimum detectable planet radius for a given star and number of observed transits. In
this paper we examine the capability of such missions using bolometric data for the only star for which suffi-
cient photometric precision exists to address this question: the Sun. The results indicate that solar-like varia-
bility does not prevent the detection of Earth-sized planets even for stars rotating significantly faster than the
Sun. Four transits are detectable formv ¼ 12 stars with rotation periods as short as"21 days, while six tran-
sits allow detection for stellar rotation periods as short as"16 days. Indeed, the limits posed by solar-like var-
iability allow for the detection of planets significantly smaller than Earth orbiting Sun-like stars. Planets as
small as 0.6 Earth radii exhibiting at least six transits can be detected orbiting bright (mv ¼ 10) solar analogs.
Subject headings:methods: data analysis — planetary systems — techniques: photometric

1. INTRODUCTION

The search for extrasolar planets has produced "100 dis-
coveries by the radial velocity method over the past 6 yr. All
of these planets are similar in size and mass to Jupiter, and
the lower limit of such searches is in the neighborhood of
Saturn’s mass. The orbits of these gas giant planets sur-
prised most planetary astronomers and theorists, as they are
not circular for the most part, but are significantly eccentric,
certainly much more so than the dispersion of the eccentric-
ity of the planets in our solar system would indicate. These
discoveries have fueled the desire to detect much smaller
planets, and missions to detect planets as small as Earth
have been proposed to NASA and to ESA. These include
NASA’s recently selected Kepler mission and ESA’s pro-
posed Eddington mission. Beyond detecting planets,
NASA’s Terrestrial Planet Finder (TPF) mission is envi-
sioned as an infrared-nulling interferometer with the ambi-
tious goal of imaging Earth-sized planets orbiting nearby
stars. The distance to which TPFmust search and, hence, its
physical scale are dictated by the frequency of Earth-sized
planets about solar-like stars in our Galactic neighborhood.
The only technology identified that appears capable of
delivering this crucial information is transit photometry.
While gravitational microlensing might also play a role in
accumulating statistical information about planets signifi-
cantly smaller than Jupiter, it does so only for stars too dis-
tant for the planned scope of TPF.

In transit photometry, nearly continuous flux measure-
ments of many individual stars are used to search for signa-
tures caused by the transit of a planet crossing a stellar disk.
The amplitude of the flux reduction reveals the size ratio of
the planet to the star, while the time interval between tran-
sits gives the orbital period. From Kepler’s third law and
from knowledge of the stellar mass and size, the planetary
size and semimajor axis can be determined (Borucki &

Summers 1984; Schneider & Chevreton 1990). Recently,
transit photometry confirmed the planetary nature of HD
209458b first by ground-based photometry (Charbonneau
et al. 2000; Henry et al. 2000) and subsequently by space-
based photometry (Castellano et al. 2000; Robichon & Are-
nou 2000; Brown et al. 2001). Transit photometry searches
are not new. Since 1994, the Transits of Extrasolar Planets
(TEP) Network (Deeg et al. 1998; Doyle et al. 2000; Jenkins,
Doyle, & Deeg 2000) has been observing one of the smallest
known eclipsing binary systems, CMDraconis, for evidence
of small transiting planets and large nontransiting ones.
Several groups are attempting to detect 51 Peg–type planets
from the ground (see, e.g., Borucki et al. 2001; Brown &
Charbonneau 2000; Henry et al. 2000; Everett et al. 2000),
while others are using spaceborne instruments, including
the Hubble Space Telescope (HST) (Gilliland et al. 2000;
Brown et al. 2001) and theHipparcos data archive (Laughlin
2000).

In order to detect terrestrial-sized planets, unprecedented
photometric precision is required. The radius of the Earth is
approximately 1/100 that of the Sun. Consequently, a
transit of the Sun by the Earth blocks #1$ 10%4 of the flux
from the solar disk. Traditional ground-based photometry
appears to be limited to a precision of "1$ 10%3 to
1$ 10%4 for 1–4 m class telescopes (see e.g., Henry 1999;
Olsen 1977; Frandsen, Dreyer, &Kjeldsen 1989; Gilliland &
Brown 1992; Young et al. 1991; Dravins et al. 1998). The
attainable precision of ground-based CCD photometers is
not limited by shot noise or instrumental noise, however.
Noise induced by the intervening terrestrial atmosphere is
the chief culprit, injecting scintillation noise and transpar-
ency variations into the measurements. Scattering and dis-
persion in the Earth’s atmosphere result in color-dependent
extinction effects. In addition, there are clouds and over-
flights of satellites and planes through the desired field of
view. Moreover, the timescales for ground-based observa-
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tions present a problem as well, conflicting with the time-
scales pertinent to transits of inner planets (2–16 hr). There
are only a limited number of photometric hours available
each night (8–12) and a limited number of photometric
nights available each observing season (see, e.g., Borucki et
al. 2001). Clearly, space-based photometry offers many
advantages over ground-based photometry from the per-
spective of providing uninterrupted measurements of uni-
form quality. With respect to instrumental precision,
laboratory measurements have clearly demonstrated that
differential CCD photometers can easily achieve this requi-
site precision (Robinson et al. 1995; Jenkins et al. 1997,
2000b; Koch et al. 2000). Indeed, observations of transits of
209458b with HST’s Space Telescope Imaging Spectro-
graph (STIS) instrument produced an absolute photometric
data set with sufficient precision to have detected an Earth-
sized moon orbiting the inflated Jovian planet in that system
if one were present (Brown et al. 2001). In contrast to
ground-based photometric searches for Jupiter-sized plan-
ets, stellar variability is likely to be a chief noise source for
space-based, photometric missions searching for Earth-
sized planets.

The impact of solar-like variability on the detectability of
transiting planets has been studied previously. Perhaps the
first paper is Borucki et al. (1985), which examined the ques-
tion in light of measurements by the Active Cavity for Irra-
diance Monitoring (ACRIM) on board the Solar Maximum
Mission (SMM). This is one of the few papers to recognize
the problems posed by the red-noise nature of solar variabil-
ity. Moreover, the statistical nature of the solar variations is
not stationary. During solar maximum, the Sun is much
more magnetically active than at solar minimum, producing
many more Sun spots and plages and their associated pho-
tometric features. At solar maximum, for example, the frac-
tional sample standard deviation of solar irradiance is
"4$ 10%4, while at solar minimum, when few if any spots
are present, it is "1$ 10%4. As will become evident, the
timescale of variability is an important factor in determining
the detectability of planetary transits.

ACRIM’s measurements, however, were complicated by
the presence of significant instrumental noise and severe
sampling problems resulting from the spacecraft’s low
Earth orbit. The results should be viewed as highly conser-
vative regarding the detectability of Earth-sized transits in
the presence of solar-like variability. Recently, Deeg,
Favata, & the Eddington Science Team (1998) and Bordé,
Rouan, & Léger (2001) predicted the performance of the
Eddington and COROT missions, respectively. Both papers
assume that the observational noise can be filtered to yield
white-noise time series, which can then be subjected to
transit searches. Hence, both papers assume a given effective
white-noise variance due to solar variability in the subse-
quent calculations. Unfortunately, the effective white-noise
variance posed by a red-noise source is a function of both
the desired signal and the accompanying white-noise sour-
ces. For signal detection purposes, the effective white noise
cannot be represented as a unique value that can then be
added in quadrature with other white-noise sources. Thus,
without a comprehensive analysis, misleading expectations
for the signal-to-noise ratio (S/N) of transit events might
result. A paper that does take the nonwhite nature of solar-
like variations into account is that of Defay, Deleuil, &
Barge (2001). They approach the problem for Centre
National d’Études Spatiale’s planned COROT mission

using segments of data from SOHO observations and a
Bayesian detector that detects periodic signals of any shape.
Such a detector is suboptimal from the standpoint of detect-
ing transits, however, which are highly constrained to time-
scales of a few hours to roughly 16 hr for terrestrial planets.

In contrast to previous efforts, we examine 5.2 yr of DIA-
RAD/SOHO measurements to study the effects of solar-
like variability on the detectability of transiting planets, pre-
senting the most complete and comprehensive treatment of
the problem to date. We describe in detail for the first time a
realizable, nearly optimal, adaptive detector capable of
dealing with the time-varying nature of the expected non-
white noise from stellar variations. In addition, we assess
the detection threshold required to control the total number
of false alarms without any assumptions about the statistics
of the underlying observational noise.

The paper is organized as follows: We present the DIA-
RAD/SOHO measurements of solar variability in x 2. The
problem of detecting signals in noise is briefly reviewed in
x 3, leading to a wavelet-based, adaptive matched filter detec-
tor. This section is technically complete, presenting all the
detailed mathematics necessary to implement the proposed
detector. In x 4 this detector is applied to the DIARAD time
series to study the impact of solar variability under a variety
of scenarios. Noise representing instrumental and shot-
noise sources forKepler are added to the DIARAD time ser-
ies to determine the detectability of Earth-sized transits as a
function of transit duration and stellar brightness through-
out the solar cycle. We next examine the detectability of
transits as a function of stellar rotation by scaling and
resampling the DIARAD time series to simulate stars rotat-
ing faster and slower than the Sun. This is followed by the
results of a bootstrap analysis in x 5 to assess the appropri-
ateness of using Gaussian statistics to predict the perform-
ance of transit photometry campaigns. We conclude in x 6
by summarizing the results and giving suggestions for future
work. The bootstrap algorithm for assessing the distribu-
tion of the null statistics is presented in the Appendix.

2. The DIARAD/SOHO OBSERVATIONS

In order to study the capabilities of missions such as Kep-
ler and Eddington, we take measurements from the DIA-
RAD instrument on board the SOHO spacecraft as a proxy
for all solar-like stars. DIARAD is a redundant, active-cav-
ity radiometer on board SOHO that measures the white-
light irradiance from the Sun every 3 minutes (Fröhlich et
al. 1997). The second cavity is normally kept closed and is
opened occasionally to calibrate the primary cavity, which
ages throughout the mission with exposure to the Sun. The
instrumental noise for a single 3 minute measurement is 0.1
W m%2 (Steven Dewitte 1999, personal communication).
The DIARADmeasurements considered here consist of 5.2
yr of data that begin near solar minimum in 1996 January
and extend to 2001March, just past solar maximum.

The data are not pristine: there are gaps in the data set,
the largest of which lasts 104 days, and there are obvious
outliers in the data. In particular, a set of 10 or 11 consecu-
tive, anomalous points appears almost every 60 days. Each
set begins with a point several W m%2 below the trend line,
with the remaining 9 or 10 points lying approximately 6 W
m%2 above the trend line. Nevertheless, the DIARAD time
series is the most uniformly sampled, lowest noise data set
available. We have taken the liberty of removing the
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obvious outliers, such as the ones occurring every 60 days,
and a small number of isolated outliers that appear to occur
randomly. We have not removed some of the data segments
that appear to be corrupted in more subtle ways. An exam-
ple of these is given by data on the edges of gaps in the data
set, which often have atypically large slopes. Fully 83% of
the data samples are available (62% of the missing points
are represented by the three largest data gaps). For our pur-
poses, a contiguous, completely sampled data set is highly
desirable. This is mainly for computational convenience (to
avoid division by zero errors), and the filled-in points are
largely neglected in addressing the detectability of transits
against stellar variability. To that end, the missing points
have been filled in by reflecting a segment on either side of
each gap across the gap. We combine the two segments by
taking the sum of each multiplied by a linear taper directly
proportional to the distance from the closest edge of the
gap. This procedure naturally preserves continuity of the
data, and it preserves the correlation structure to a large
degree. Some smoothing of the small-scale structure occurs,
however, as the procedure takes the average of two seg-
ments of a noise process. We have adjusted the filled-in data
to reduce the amount of smoothing using a technique
described in x 4.

Figure 1 shows the DIARAD time series, binned to 1 hr.
Filled-in gaps of at least a day in duration are denoted by
the horizontal line segments at 1365.5 W m%2. The average
solar flux during the 5.2 yr of observation is 1366.6 W m%2.
Note that on this scale, an Earth-sized transit (84 parts per
million [ppm]) is 0.115 W m%2. The sample standard devia-
tion of the data set is 0.5 W m%2. This would seem to imply
that detecting Earth-sized transiting planets might be a ter-
ribly difficult, if not impossible, task. The solar variability is
not a white-noise process, however, and most of the noise
power occurs on very long timescales compared to the dura-
tion of a central transit of planets with orbital periods up to
2 yr about a solar-like star (2–16 hr). This is made clear by
Figure 2, which exhibits the power of the DIARAD time
series as a function of timescale near solar minimum (1996)
and near solar maximum (2000) along with the energy at

each timescale for Earth-sized, 8 and 12 hr transits. These
curves were obtained by a wavelet analysis described in x 3.
Note that at timescales shorter than 1 day, the ratio of the
transit energy to the power of the solar time series is much
greater than 1. This indicates that transits of Earth-sized
planets are highly detectable against solar-like variability,
with low intrinsic noise, space-based observations.

3. DETECTION THEORY

Suppose we wish to detect a signal sðnÞ (with time sample
index n) in observational data xðnÞ. Further, suppose that
xðnÞ is composed solely of Gaussian noise wðnÞ [i.e.,
xðnÞ ¼ wðnÞ] or that xðnÞ is the sum of the signal plus noise
[i.e., xðnÞ ¼ wðnÞ þ sðnÞ]. Time series will usually be denoted
by the functional form used here; however, it is sometimes
convenient to use vector notation: x ¼ xðnÞ; n ¼ 1; . . . ;N,
where N is the length of the time series. Under these condi-
tions, the optimal detector is a matched filter of the form

l ¼ xTR%1sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sTR%1s

p ¼ R%1=2xð ÞT R%1=2sð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R%1=2sð ÞT R%1=2sð Þ

q ; ð1Þ

whereR is the autocorrelation matrix of the noise, wðnÞ, and
T is the transpose operator (see, e.g., Kay 1999). The value
of the detection statistic, l, determines whether a detection
has been made by comparing it to a given threshold, !. This
threshold is chosen so that the probability of a false detec-
tion occurring is small by some objective criterion. In the
case of Kepler, the threshold is set so that no more than one
false alarm is expected for the entire mission, which consists
of searching light curves of more than 100,000 stars for tran-
siting planets with orbital periods up to 2 yr. As there are
#2$ 107 independent tests per star, there are a total of
2$ 1012 tests yielding a threshold of 7.1 ", assuming Gaus-
sian statistics (Jenkins, Caldwell, & Borucki 2002).
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Fig. 1.—Time series of solar irradiance as measured by the DIARAD
instrument on board SOHO from 1996 January 1 through 2001 March
binned to 1 hr. Gaps of a day or longer are denoted by the horizontal seg-
ments at 1365.5Wm%2.
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Fig. 2.—Distribution of power as a function of timescale from a wavelet
analysis of the time series of solar irradiance as measured by the DIARAD
instrument on board SOHO for the years of 1996, near solar minimum
(dash-dotted curve), and 2000, near solar maximum (dotted curve). The
timescale labeling is approximate, as no unique definition for it exists. The
distribution of energy with timescale is also plotted for an Earth-sized, 8 hr
transit (solid curve) and for a 12 hr transit (dashed curve). The area under
the transit curves and above the solar variability curves indicates that the
transits are readily detectable against the solar variations.
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The detection statistic l has the following properties. If no
signal is present, l is a random variable drawn from a zero-
mean, unit-variance, white Gaussian noise (WGN) process.
On the other hand, if the signal s is present, l again has unit
variance, but it has a mean equal to sTR%1sð Þ1=2. To in-
terpret this quantity, note that for white noise, R is diagonal
with R ¼ "2I , where "2 is the variance of the noise and I is
the identity matrix. Hence, the detectability of a signal is
determined by the ratio of the energy of the whitened signal
to the power of the whitened noise (the energy per unit
time). For a given detection threshold, !, the detection rate,
PD, and the false-alarm rate, PFA, can be determined from

PD ¼ 1ffiffiffiffiffiffi
2#

p
Z 1

!%hli
exp

"
% y2

2

#
dy ; ð2Þ

PFA ¼ 1ffiffiffiffiffiffi
2#

p
Z 1

!
exp

"
% y2

2

#
dy ; ð3Þ

respectively, where hli is the mean detection statistic or S/N
of the signal s. Note that for transit photometry, three or
more transits are usually required to detect a planet, as the
confidence in the detection is provided by the exquisite
repeatability of the events, and too, the single-transit S/N
may not be sufficient to conclude that a detection has
occurred. Thus it is the total S/N of a set of three or more
transits that determines the detection rate. Equations (2)
and (3) allow the performance of a photometric campaign
to be readily established, assuming that the effective number
of independent tests to be conducted per star is known,
together with the total number of stars and the mean S/N of
a set of transit events.

Equation (1) can be rewritten as the dot product of the
whitened data vector ~xx ¼ R%1=2x with the whitened signal
vector ~ss ¼ R%1=2s normalized by the magnitude of ~ss:
l ¼ ~x xx x~ss=j~ssj. From the second equality in equation (1), we
see that the optimal detector consists of the cascade of a
whitening filter with a matched filter (also called a correla-
tion receiver). The difficulty lies in designing the whitening
filter itself, as the correlation matrix R is often unavailable.
The design of an appropriate whitening filter is the subject
of the remainder of this section.

If the mean value and the correlation structure of the
noise process are stationary (i.e., constant in time) and cer-
tain additional mild conditions are met, equation (1) can be
expressed in the frequency domain as per Kay (1999):

l ¼
Z #

%#

Xð!ÞS)ð!Þd!
Pð!Þ

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ #

%#

Sð!ÞS)ð!Þd!
Pð!Þ

s

; ð4Þ

where Xð!Þ and Sð!Þ are the Fourier transforms of the data
and signal, respectively, asterisks denote complex conjuga-
tion, and Pð!Þ is the power spectrum of the noise. Kay
(1999) suggested an adaptive matched filter based on equa-
tion (4) using a smoothed periodogram to estimate Pð!Þ.
This approach is fine for noise processes that are weakly col-
ored or white, but not for 1/f-type processes such as solar
variability. Simply smoothing the periodogram with a mov-
ing average filter tends to reduce the apparent spectral slope
of these processes significantly, yielding an inaccurate
power spectrum estimate. Alternatively, Kay’s method may
be modified by using multitaper spectrum approaches to
estimate the noise power spectrum, minimizing the ‘‘ leak-
age ’’ of the effective data window. Several choices for tapers

are available, including sinusoidal families (Riedel & Sidor-
enko 1995), which approximate optimal tapers minimizing
the asymptotic bias of the estimate. Alternatively, prolate
spheroidal sequences are widely acknowledged to yield opti-
mal spectrum estimates minimizing the spectral leakage out-
side a given resolution bandwidth and have been used with
great success to examine p-mode oscillations in the solar
power spectrum (see, e.g., Walden, Percival, & McCoy
1998). While good results can be obtained using a modifica-
tion of Kay’s approach, there are computational issues to
consider. The length of the window used to estimate the
periodogram must be chosen in some way, as well as the
number of adjacent data segments to be used to provide
additional smoothing of the power spectrum estimate.
Moreover, the sensitivity of the detector to a transit-like sig-
nal depends on the location of the transit pulse within the
window. It would seem that for the best results, a periodo-
gram centered at each possible transit location needs to be
computed, further increasing the computational burden.
We propose a wavelet-based approach using an overcom-
plete wavelet transform (OWT) of the data and the signal to
be detected. The wavelet domain is a natural one for design-
ing time-varying filters since it is a joint time-frequency rep-
resentation of a waveform. In addition, the overcomplete
wavelet expansion admits a filter-bank implementation with
a direct interpretation in terms of equation (4). As such, the
properties of Kay’s adaptive detector should hold for the
detector described here; namely, that the detector would be
asymptotically efficient (ideal) if an independent realization
of the noise process were available.

First, let us review wavelets briefly. A wavelet transform
is similar to the Fourier transform in that the wavelet coeffi-
cients are the projection of the original data vector onto a
set of basis functions. In the case of wavelets, however, the
basis functions are concentrated in time as well as in fre-
quency. Moreover, unlike the Fourier basis, there is an
infinity of possible choices for wavelet bases that trade off
resolution in frequency for resolution in time. (This also
implies that there is not a unique definition of the term
‘‘ timescale ’’ for wavelet transforms as there is for ‘‘ fre-
quency ’’ for the Fourier transform.) The first orthogonal
nontrivial wavelets were obtained by Debauchies (1988),
who was interested in obtaining a continuous wavelet trans-
form through iterations of a discrete time algorithm. Some-
what earlier, however, Smith & Barnwell (1984) succeeded
in designing critically sampled, perfect-reconstruction,
octave-band filter banks. Debauchies’ wavelets are special
cases of those filters meeting the conditions specified by
Smith and Barnwell, such that the limiting process is a con-
tinuous time wavelet transform. The methodology we adopt
is based on a filter-bank implementation of an overcomplete
discrete-time wavelet transform. Hence, we will approach
the subject from the viewpoint of filter banks as per Vetterli
&Kovačević (1998).

Figure 3 shows a dyadic, critically sampled filter bank. In
the first stage in the process, the time series xðnÞ is separated
into two channels by filters with responses HLð!Þ and
HHð!Þ. Each filtered signal component is then down-
sampled by a factor of 2 (essentially, every other sample is
discarded). The high-pass signal, x1ðnÞ, is not subjected to
further filtering in the analysis section. The low-pass signal,
however, is treated in an identical manner as its predecessor,
xðnÞ, and the process is iterated M % 1 times, for a total of
M output channels. For our purposes, all we need to know
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is that HLð!Þ is a low-pass filter and that HHð!Þ is a high-
pass filter, and that these filters isolate complementary fre-
quency components of the time series xðnÞ. Corresponding
to HLð!Þ and HHð!Þ are reconstruction filters GLð!Þ and
GHð!Þ such that the signal xðnÞ is exactly equal to its recon-
struction x̂xðnÞ. The equivalent filter for each channel in Fig-
ure 3 can be determined explicitly, and we will refer to these
filters from the highest center frequency to the lowest as
fh1ðnÞ; h2ðnÞ; . . . ; hMðnÞg. The output signals corresponding
to these filters will be designated fx1ðnÞ; x2ðnÞ; . . . ; xMðnÞg,
respectively.

Figure 4 shows the frequency response of each filter in a
filter-bank implementation of a discrete-time wavelet
expansion of a time series out to M ¼ 16. Figure 4a shows

the frequency axis on a linear scale, while Figure 4b is plot-
ted with a log scale for the frequency axis. The filters enjoy a
‘‘ constant-Q ’’ property. That is, the quality factor (Q)
defined to be the ratio of the center frequency of a bandpass
filter to its FWHM, is constant for all but the final filter. In
the following analysis, we omit the decimation operators
(‘‘ # 2 ’’) in Figure 3a and replace each filter following a deci-
mation operator with the result of up-sampling it by 2 (i.e.,
we retain the same effective filters as those of the critically
sampled filter bank). This leads to an overcomplete wavelet
expansion of a filtered time series. The price we pay is that
the representation is highly redundant, increasing the com-
putational burden, since we must now filter the samples dis-
carded in the critically sampled implementation. The gain
achieved is the shift invariance of the OWT of a time series.
Therefore, the OWT of the convolution of two time series is
the same as convolving the OWT coefficients of one time
series at each scale with the corresponding coefficients of the
other time series. This is not the case for the critically
sampled wavelet transform. Tomake this explicit, let

WfxðnÞg ¼ fx1ðnÞ; x2ðnÞ; . . . ; xMðnÞg ð5Þ

be the overcomplete wavelet transform of xðnÞ, where

xiðnÞ ¼ hiðnÞ ) xðnÞ; i ¼ 1; 2; . . . ;M ð6Þ

and the asterisk denotes convolution. Then we have

WfxðnÞ ) yðnÞg ¼ fx1ðnÞ ) y1ðnÞ; x2ðnÞ
) y2ðnÞ; . . . ; xMðnÞ ) yMðnÞg : ð7Þ

A remark is in order regarding the implementation of the
decimated, discrete time-wavelet transform. Normally, in
order to ensure that the number of output points equals the
number of input points, the convolutions performed on the
data set are circular. In other words, the signal vector is
treated as if it were periodic with period N, the length of the
data set. If N is a power of 2, then the convolutions can be
performed efficiently with fast Fourier transforms. We
adopt this convention as well, applying it to the overcom-

Fig. 3.—Block diagram of a filter-bank implementation of a critically
sampled, discrete-time wavelet expansion of a time series; (a) shows the
analysis section, which partitions a time series into different channels with
complementary passbands, and (b) illustrates the synthesis section that
reconstructs the original time series from the set of channels.
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Fig. 4.—Frequency response of the filters in a filter-bank implementation of a discrete time-wavelet expansion of a time series using Debauchies’ 12 tap fil-
ter; (a) shows the frequency responses on a linear frequency scale, and (b) has a logarithmic frequency scale, illustrating the ‘‘ constant-Q ’’ property of an
octave-band wavelet analysis.
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plete discrete-time wavelet transform such that each
xiðnÞ; i ¼ 1; . . . ;M is an N-point sequence. Moreover, we
will not distinguish between circular and noncircular convo-
lution unless there is a reason to do so (i.e., a relationship
holds for one but not the other).

One additional property is required before we can obtain
a wavelet-based expression for a matched filter. We need to
be able to express the dot product between two vectors in
the wavelet domain. For an overcomplete, dyadic wavelet
expansion, the following relationship holds:

x x y ¼
XM

i¼1

2%minði;M%1Þxi x yi ; ð8Þ

where x and y are data vectors (time series). The restriction
of the power of 2 in equation (8) is necessary because the last
two channels of the OWT have the same bandwidth. Equa-
tion (8) can be established from Parseval’s relation for tight
frames (Vetterli & Kovačević 1998). This result, in turn,
should agree with our intuition, as each time we iterate the
dyadic filter bank of Figure 3, we double the number of sam-
ples representing the low-pass channel output from the pre-
vious iteration.

We are now in the position to recast equation (4) in terms
of the overcomplete wavelet expansion. The whitening filter
is implemented by simply scaling each channel of the filter
bank by a time-varying value inversely proportional to the
local standard deviation of the data in that channel. The
bandwidth in the channel helps determine the time frame
over which the standard deviation is estimated. If the win-
dow is K points long for the smallest scale, then it should be
2i%1K for the ith channel. The window should also be much
longer than the transit duration of interest so that it will not
itself be perturbed by a transit, thereby reducing the detect-
ability of transits. On the other hand, the window should be
kept short enough to track changes in the statistics of the
underlying observational noise. Empirically we find that a
window length 10 times the duration of a transit works well.
The detection statistic, then, is computed by multiplying the
whitened wavelet coefficients of the data by the whitened
wavelet coefficients of the transit pulse and then applying
equation (8):

l ¼
~x xx x~ssffiffiffiffiffiffiffiffi
~s xs x~ss

p

¼
PM

i¼1 2
%minði;M%1Þ PN

n¼1½xiðnÞ="̂"iðnÞ+½siðnÞ="̂"iðnÞ+ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1 2

%minði;M%1Þ PN
n¼1 s

2
i ðnÞ="̂"2

i ðnÞ
q ; ð9Þ

where the time-varying channel variance estimates are given
by

"̂"2
i ðnÞ ¼

1

2iK þ 1

Xnþ2i%1K

k¼n%2i%1K

x2i ðkÞ; i ¼ 1; . . . ;M ; ð10Þ

where each component xiðnÞ is periodically extended in the
usual fashion and 2K þ 1 is the length of the variance esti-
mation window for the shortest timescale.

The structure of the OWT is exceptionally convenient as
it permits the efficient calculation of l for a transit pulse at
any location. Note that equation (10) implies that the
whitening coefficients are determined solely by xðnÞ, regard-
less of the assumed location of a transit signal. Thus, to
compute l for a given transit pulse centered at all possible

time steps, we simply ‘‘ doubly whiten ’’ WfxðnÞg [i.e.,
divide it pointwise by "̂"2

i ðnÞ], correlate the results with
WfsðnÞg, and apply the dot product relation, performing
the analogous operations for the denominator, noting that
"̂"%2
i ðnÞ is itself a time series:

lðnÞ ¼ NðnÞffiffiffiffiffiffiffiffiffiffiffi
DðnÞ

p ¼
PM

i¼1 2
%minði;M%1Þ½xiðnÞ="̂"2

i ðnÞ+ ) sið%nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1 2

%minði;M%1Þ"̂"%2
i ðnÞ ) s2i ð%nÞ

q :

ð11Þ

Note that the minus sign in sið%nÞ indicates time reversal.
The terms NðnÞ and DðnÞ are introduced for convenience
later on.

Recall at this point the form of Kay’s adaptive detector
(eq. [4]) and the partitioning of power in each channel by the
filter-bank implementation of the OWT (Fig. 4). Rather
than estimating the power spectrum of the noise with a uni-
form moving average, equations (9) and (11) estimate Pð!Þ
by partitioning the frequency domain into nonuniform
intervals that increase in width logarithmically from the
baseband. They then average the power in each channel
over a time interval proportional to the inverse of the width
of the channel. Clearly, an analogous operation could be
carried out using periodograms rather than a wavelet trans-
form. The efficiency of the structure of the OWT, however,
provides a compelling reason not to do so. Moreover, the
OWT allows one to estimate the channel variances with win-
dows of differing lengths, an option not available with perio-
dograms. Equation (11) forms the basis for the adaptive
matched filter applied throughout the remainder of this
paper. For the purposes of examining the detectability of
transits against solar-like variability, however, we need only
compute the expected detection statistic lh i or the S/N via

hlðnÞi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

i¼1

2%minði;M%1Þ"̂"%2
i ðnÞ ) s2i ð%nÞ

vuut ; ð12Þ

which holds so long as the analysis windows used to esti-
mate "̂"%2

i ðnÞ are sufficiently long. This can be verified by
examining the change in the detection statistics when
hx2i ðnÞi is calculated with and without the presence of tran-
sits. Finally, we note how to combine the components of
individual detection statistics to form multiple-event statis-
tics. Suppose we wish to test for transits at widely spaced
locations A , f1; . . . ;Ng. The total detection statistic is
given by

lA ¼
X

i2A
NðiÞ

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i2A
DðiÞ

r
; ð13Þ

where N and D are as in equation (11). Hence, lA can be
determined from the components of the single-transit statis-
tics at each individual transit location. The next section
presents the results of our analysis of the DIARAD data set
using this analysis technique.

4. RESULTS

In this section we present the results of using the DIA-
RAD/SOHO data to predict the expected performance of
Kepler, a recently selected discovery mission designed to
detect Earth-sized planets orbiting solar-like stars in the cir-
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cumstellar habitable zone. Kepler will observe more than
100,000 target stars in the Cygnus constellation continu-
ously for at least 4 yr at a sampling rate of 4 hr%1 (Borucki et
al. 1997). For detecting Earth-sized planets, the spectral
types of the target stars span F7 through K4. The range of
planetary periods of greatest interest is from a few months
to 2 yr, with a corresponding range of central transit dura-
tions from "5 to 16 hr. The average transit duration is 10.1
hr for a uniform distribution of orbital periods over this
range. (Note that since the average chord length1 of a circle
of unit diameter is #/4, the average duration of a transit is
#/4 times the duration of a central transit, which is 13 hr at
an orbital period of 1 yr. The average central transit dura-
tion over these periods happens to be "13 hr, too. More-
over, 50% of transits are longer than 11.3 hr.) The total
number of effective independent tests to be performed in
searching the light curves of 100,000 stars for transiting
planets with orbital periods in this range is #2$ 1012 (Jen-
kins et al. 2002). Assuming Gaussian statistics, a detection
threshold of "7 " is required to control the total number of
expected false alarms below 1 for the entire experiment. At
this threshold, if the mean S/N of a set of transits is -8 ", a
detection rate of -84% will be achieved. As the total S/N is
proportional to the square root of the number of transits, a
single event S/N of 4 " suffices for each of a set of four tran-
sits (for a 1 yr orbit). This is a conservative requirement. It
can easily be argued that the 50% detection rate achievable
at a single event S/N of 3.5 " would yield a statistically sig-
nificant sample of detections (or nondetections) given
100,000 target stars in the survey.

Kepler’s aperture is 0.95 m allowing 5:75$ 109 e% to be
collected every 6.5 hr for a G2,mv ¼ 12 dwarf star for a shot
noise of 13 ppm. The instrument noise should be "6 ppm
over this same duration. This value is based on extensive
laboratory tests, numerical studies, and modeling of the
Kepler spacecraft and photometer (Koch et al. 2000; Jenkins
et al. 2000b; Remund et al. 2001). The values in Table 3 of
Koch et al. (2000) support this level of instrumental noise
from a high-fidelity hardware simulation of Kepler’s envi-
ronment, while the numerical studies of Remund et al.
(2001) are based on a detailed instrumental model. This
model includes terms such as dark current, read noise,
amplifier and electronics noise sources, quantization noise,
spacecraft jitter noise, noise from the shutterless readout,
and the effects of charge transfer efficiency. To simulate the
combined effects of the shot noise and instrumental noise
for Kepler, a WGN sequence was added to the DIARAD
time series with a standard deviation equal to the square
root of the combined shot and instrumental variance for an
mv ¼ 12 star less the square of the DIARAD instrumental
uncertainty (0.1 W m%2 in each 3 minute DIARAD mea-
surement). The DIARAD instrumental variance is "1

4 the
combined shot and instrumental variance for one of Kep-
ler’s mv ¼ 12 stars. Prior to applying the techniques of x 3, it

was necessary to extend the length of the time series to a
power of 2 (from "217.47 to 218 points). The time series was
‘‘ periodically ’’ extended by reflecting segments at the
beginning and end of the original time series across the
imaginary gap from the end to 218. Both reflected segments
were tapered and added together much in the same fashion
as the missing points were filled in as described in x 1. In
addition, to compensate for the smoothing nature of the fill-
in procedure, we computed the critically sampled WT of the
extended time series and examined the local variances of the
wavelet coefficients. The variances of the filled-in points
were adjusted to match the variances of the points at the
edges of the gaps, with a linear transition from one value to
the next. This procedure was applied to each wavelet scale
so long as the mean variance of the filled-in points was sig-
nificantly below that of the original points. These proce-
dures minimize edge effects attendant in performing a
circular WT of a time series containing data gaps. In an
actual search, care needs to be exercised near the edges of
any data gaps. Any candidates with transits near data gaps
should be scrutinized carefully to eliminate false positives
due to edge effects.

The Kepler mission should not suffer from large time
gaps. Roll maneuvers are planned about every 90 days to
reorient the sunshade and the solar panels, as the Sun would
otherwise appear to revolve about the spacecraft every year.
A 24 hr period has been budgeted for thermal stability to be
achieved after each roll and for nominal science operations
to recommence. We assume that transits cannot be found
within 12 hr prior to the roll maneuver and for 12 hr after
thermal stability is achieved. The lost data amounts to"2%
of the total, implying that about 2% of all transits occurring
during the mission will be missed. This represents an insig-
nificant impact on the science return as the detection of a
planet does not depend on observing a set of consecutive
transits. Moreover, the missing phase space can be filled in
by extending the mission by about 2% or 1 month beyond
the nominal 4 yr.

The OWT of the extended synthetic time series and that
of a single transit were computed using Debauchies’ 12 tap
discrete wavelet filter (Debauchies 1988). Equation (12) was
applied to transits of 6.5 hr duration and 13 hr duration
with depths of 84 ppm (0.115 W m%2) corresponding to an
Earth-sized transit of a solar-like star. Note that we have
not included limb-darkening in the simulated transits: they
are simply rectangular pulses. This is a conservative
approach. Limb-darkening increases the depth of nongraz-
ing transits, providing higher total signal energy for transits
with duration longer than 82% of a central transit (which
holds for more than 57% of all transits). Also, limb-darken-
ing concentrates the energy of a transit into a shorter time
period. Both of these effects increase the S/N of a transit sig-
nal and increase its detectability against solar-like variabil-
ity, which exhibits less power at shorter timescales.
Throughout this discussion we ignore S/Ns calculated for
filled-in points in the DIARAD data or from points within a
day of gaps at least as long as a day. Filled-in points do
influence the results of nearby non–filled-in points since they
are included in the calculation of local variance estimates of
other points (see eq. [10]). Their influence is reduced by the
compensation scheme described earlier. Figure 5 shows the
results as a function of time throughout the 5.2 yr DIARAD
data record. Note that the S/N of a 13 hr transit is signifi-
cantly higher than that of a 6.5 hr transit at the beginning of

1 Here we must be clear about how ‘‘ random ’’ chords are generated.
For circular orbits, the sole parameter determining whether a planet tran-
sits or not is orbital inclination, i. Assuming that i is uniformly distributed
implies that the distance of chords from the center of the stellar disk for
transiting planets, a, is also uniformly distributed. The average chord
length, !cc, of chords constructed in this manner for a unit-diameter disk is
then

R 1=2
0 2 1=4% a2ð Þ1=2da=

R 1=2
0 da or #/4, giving the ratio of !cc to the maxi-

mum chord length, 1, as #/4.
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the data record near solar minimum ("5.7 vs. "4.9 ") but
that it is nearly the same at the end of the record near solar
maximum ("4.25 vs. "4 "). This is a consequence of the
movement of noise power toward shorter timescales as solar
maximum is approached (see Fig. 2). Another way to inter-
pret the S/Ns plotted in this figure is to examine the equiva-
lent total noise in a time interval equal to the duration of the
transit. This is easily computed by dividing the transit depth
(84 ppm) by the S/N. Figure 6 shows the result of this calcu-
lation for the 6.5 and 13 hr transits. As the desired total
noise forKepler is to have no more than 21 ppm for the total
noise budget at 6.5 hr (for an mv ¼ 12 star), it is clear that
this requirement is met with significant margin over most of

the data record. Since transit photometry campaigns search
for sequences of transits, it is the mean S/N that is of inter-
est, not the S/N of any particular transit. These calculations
were extended to cover transits of durations of 0.25–20 hr.
Figures 7 and 8 present contour maps of the S/N and equiv-
alent total noise over the course of the DIARAD observa-
tions with instrumental and shot noise expected for Kepler.
The S/Ns allowKepler to detect Earth-sized planets exhibit-
ing four transits longer than"5 hr formv ¼ 12 stars.

We note that minimum detectable planet radius is not
particularly sensitive to the single-event S/N as this is pro-
portional to the square of the planetary radius. To illustrate
this, we extend the calculations above to stars of magnitude
other than mv ¼ 12. The uncertainty of the DIARAD time
series is equivalent to the combined shot and instrumental
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transits.
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noise of a mv ¼ 10:4 star. To simulate data from stars
brighter than this required ‘‘ denoising ’’ the DIARAD time
series to remove the instrumental noise. To do this, we mul-
tiplied each channel of the decimated WT of the 15 minute
binned DIARAD time series by a scalar equal to the square
root of the ratio of the sample variance less the DIARAD
instrumental variance to the sample variance and then
transformed the result back into the time domain. This
operation is essentially a Wiener filter implemented in the
wavelet domain. Noise sequences representing a combina-
tion of shot noise and Kepler instrumental noise were then
added to the ‘‘ denoised ’’ time series to simulate data from
stars of different magnitudes. The sample variances of the
first few channels are actually slightly less than the reported
measurement uncertainties. We believe that this is likely the
result of the measurement-replacement procedure we used.
Alternatively, it may be due in part to an overly conserva-

tive estimate of the instrument sensitivity by the DIARAD
science team. In any case, the difference between the
reported variance and the actual sample variance is small.
At the point design for a mv ¼ 12 star, the difference is rela-
tively insignificant since the shot noise for such a star is well
above the reported DIARAD measurement uncertainty.
For the first several channels (short timescales), then, we
simply set the scalar to zero when the operation given above
yielded an imaginary number. This is in one respect a con-
servative approach as it places more noise in these channels
than in the original time series for a given magnitude star.

Figure 9 shows a contour map of the Earth-sized, single-
transit S/N as a function of stellar magnitude and transit
duration. We obtain S/Ns as high as 11 " for mv ¼ 9 stars,
while S/Ns as low as 1 " are obtained atmv ¼ 14 for transits
longer than 2.5 hr. Values for the minimum detectable plan-
etary radius at an 84% detection rate for four and for six
transits are given in the contour maps of Figure 10. This fig-
ure demonstrate that planets significantly smaller than
Earth can be found by Kepler. For example, at mv ¼ 10 and
for four transits, planets with radii as small as 0.7 R. are
detectable (0.5 Earth areas). With six transits, planets with
radii as small as 0.6 R. (0.36 Earth areas) are detectable.
Additionally, for cases exhibiting six transits, planets as
small as 1.0 R. can be detected orbiting stars as dim as
mv ¼ 12:7. Keep in mind that this is for a detection rate of
84%. Planets smaller than these are still detectable at lower
detection rates.

Finally, we use the DIARAD time series to estimate the
effect of stellar rotation period on the detectability of terres-
trial planets. Batalha et al. (2002) estimate that 65% of Kep-
ler’s target stars (F7–K9) are sufficiently old to have spun
down to rotation periods -20 days. The question is how is
the detectability of transits affected by rotation periods
experienced by the majority of these target stars? Ground-
based observations show that solar-type stars rotating faster
than the Sun are more magnetically active, increasing the
photometric variability over a range of timescales. These
observations provide an indication of the appropriate scal-
ing relation to use on timescales greater than 1 day. Figure 7
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Fig. 9.—Contour map of the Earth-sized, single-transit S/N (in ") as a
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magnitudes corresponds to the range forKepler’s target stars.
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Fig. 10.—Contour map of the minimum detectable planetary radius (R. ¼ 1) at the 84% detection rate as a function of stellar magnitude and transit dura-
tion for planets exhibiting (a) four transits and (b) six transits. At mv ¼ 10 and for four transits, planets with radii as small as 0.7 R. are detectable (0.5 Earth
areas).With six transits, planets with radii smaller than 0.6R. (0.36 Earth areas) are detectable.
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of Radick et al. (1998) indicates that photometric variabil-
ity, "phot, on timescales shorter than a year is related to the
chromospheric activity level parameter, R0

HK, by a power
law with exponent 1.5. Other observations (Noyes et al.
1984) suggest that R0

HK is approximately inversely propor-
tional to stellar rotation period, Prot, so that

"phot # P%1:5
rot : ð14Þ

What these ground-based studies do not provide, however,
is the relation between rotation period and photometric var-
iability on timescales shortward of a few days. The DIA-
RAD measurements represent a means by which the
timescale-dependent response of solar-like stars to increased
magnetic activity can be estimated. At solar maximum (with
high magnetic activity levels), variability at long timescales
increases significantly relative to solar minimum, while it
remains comparatively constant at timescales of hours (see
Fig. 2). To generate a synthetic time series for an arbitrary
rotation period, then, we first scale the variances of the
OWT of the filled-in DIARAD time series (binned to 15
minutes) according to equation (14) and the ratio of the
curves in Figure 2, so that the scaling ramps from a factor of
1 at the shortest timescale up to the value given by equation
(14) by the ninth timescale (#2.66 days). Next, the inverse
OWT is performed, and the resulting time series is
resampled by linear interpolation onto the appropriate time
grid. Finally, Kepler’s combined shot and instrumental
noise formv ¼ 12 stars is added to the resampled time series.
This procedure represents our best estimate of how stellar
rotation period should affect the photometric variability of
solar-like stars. We do not expect this model to be accurate
over a wide range of stellar types. It probably is indicative
only of the expected effects over stellar types near the Sun

(G1–G4). Earlier type stars generally exhibit less spotting
and consequently, lower "phot, while later type stars exhibit
more spotting and higher "phot for a given Prot (see, e.g.,
Messina, Rodono, & Guinan 2001). Earlier type stars, how-
ever, are larger, requiring a larger planet to achieve the same
S/N for a given photometric variability, while later type
stars are smaller, mitigating the increased variability for a
given size planet to some degree. This analysis does not
include the effects of flare events, which exhibit transient sig-
natures on timescales of minutes (more frequently) to a few
hours (more rarely), the frequency of which increases signifi-
cantly for rapid rotators.

Keeping these limitations in mind, we investigated rota-
tion periods from as short as one-tenth to as long as twice
that of the Sun, where we adopt a mean projected solar rota-
tion period, P/, of 26.6 days. Figure 11 shows the power
density as a function of timescale for mv ¼ 12, solar-like
stars with 0:5 P/ 0 Prot 0 2:0 P/, along with the energy
density of a 10 hr, Earth-sized transit. As Prot decreases,
more transit energy is masked, decreasing the detectability.
On the other hand, as Prot increases, more transit energy
leaks through the background noise, aiding in detection.
Figure 12 shows the mean S/N determined over rotation
periods between 0.1 P/ and 2.0 P/ and as a function of
transit duration from 0.25 to 20 hr. The single-transit S/N
exceeds 4 " for transits longer than 7 hr and Prote21 days,
giving a detection rate- 84% for four or more such transits.
(We note that applying the scaling relation of eq. [14] to all
timescales uniformly results in a value of 3.5 " for similar
duration transits and rotation periods, yielding a 50% detec-
tion rate.) Figure 13 shows contour plots of the minimum
detectable planet radius at the 84% detection rate for four
transits (Fig. 13a) and for six transits (Fig. 13b) as functions
of transit duration and stellar rotation period. Six 3 hr or
longer transits are sufficient to detect an Earth-sized planet
for Prote16 days. Kepler stands a good chance of detecting
planets at least as small as Earth orbiting stars with rotation
periods 40% shorter than that of the Sun.
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5. ASSESSING THE NORMALITY OF THE
DIARAD DATA

The interpretation of the S/Ns obtained in x 4 in terms of
detection probability depend on the distribution of the null
statistics. If the observation noise is significantly non-Gaus-
sian, equation (3) may underestimate the false-alarm rate
for a given threshold, and so the detection rate may be lower
than that indicated by equation (2) once a reasonable
threshold is determined. In this section we characterize the
distribution of null statistics for simulated Kepler data. We
then assess its similarity to a Gaussian distribution in terms
of the threshold required for a given false-alarm rate. We
note first that even if the distribution of the individual null
statistics is significantly non-Gaussian, the distribution of
the null statistics for multiple transits may be approximately
Gaussian. This is due to the tendency of linear combinations
of random variables to approach a Gaussian distribution
(Papoulis 1984). To address this question, we apply a boot-
strap approach similar to that described in Jenkins et
al. (2002). The modified algorithm is described in the
Appendix.

One might wonder whether solar-like variability produ-
ces transit-like features that might be confused with actual
transit events. It is a curious characteristic of random proc-
esses that they can, indeed, produce any given feature if
observed for a sufficient length of time. The DIARAD data
set is no exception. There are several transit-like features
over the 5.2 yr data set. The S/N of these features is no more
than 5 ", and only a handful exhibit detection statistics
larger than 4 ". The number of such events is somewhat
higher than one would expect from Gaussian noise. The
average Earth-sized transit yields a detection statistic of "8
" against this noise. Thus, even though there are some
transit-like features, they are individually much less signifi-
cant than an Earth-sized transit event would be. The ques-
tion to answer is this: how great is the likelihood that a
number of such features would occur with a purely periodic
separation, so that the total S/N exceeds the detection
threshold? To answer this question, we examine the boot-

strap distribution of the null statistics of searches for sets of
four 8 hr transits in the DIARAD data set.

Figure 14 shows the false-alarm rate as a function of
detection threshold for the bootstrap statistics for the bare
DIARAD data, along with those for simulated Kepler data
for an mv ¼ 12 star, and for that expected for Gaussian
noise. The range of false-alarm rates extends from 10%10 to
10%15. At the required false-alarm rate of 10%12 for Kepler,
the curves indicate thresholds of 7.04, 7.18, and 7.52 ",
respectively, for Gaussian noise, for noise appropriate for a

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.9

1

1.1

1.25

1.5
1.75 2

Ro
ta

tio
n 

Pe
rio

d,
 S

un
=1

Transit Duration, Hours

(a)

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.8

0.9

1
1.1

1.25
1.5 1.75

Ro
ta

tio
n 

Pe
rio

d,
 S

un
=1

Transit Duration, Hours

(b)

Fig. 13.—Contourmaps of theminimum detectable planetary radius (R. ¼ 1) at the 84% detection rate as a function of transit duration and stellar rotation
period for planets exhibiting (a) four transits and (b) six transits. Instrument and shot noise appropriate for mv ¼ 12, G2 stars in Kepler’s FOV is included in
the analysis. Transiting Earth-sized planets exhibiting six transits are detectable around stars with rotation periods 40% shorter than that of the Sun (Prot # 16
days).
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Fig. 14.—Graph of the false-alarm rate as a function of detection thresh-
old for a search for four 8 hr transits in the DIARAD data. The dotted line
is for Gaussian noise, the solid line is for the DIARAD data plus shot and
instrumental noise appropriate for anmv ¼ 12 star, and the dashed curve is
for the DIARADdata with no additional noise. Although the null statistics
of the DIARAD data are significantly non-Gaussian, the combination of
statistics for searches for four or more transits results in a distribution that
is fairly well characterized as Gaussian. When the additional shot and
instrumental noise for anmv ¼ 12 star is included, the resulting distribution
is nearly Gaussian.
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mv ¼ 12 Kepler star, and for DIARAD data with no instru-
mental or shot noise added. Thus, to reach a false-alarm
rate appropriate for Kepler, we would need to increase the
detection threshold above that for Gaussian noise by only
0.14 " for amv ¼ 12 star, and by"0.5 " for very bright stars
(mv 0 10:4). This reduces the detection rate to 80% at
mv ¼ 12. At mv 0 12, however, the detection rate is reduced
by an insignificant amount as the S/N for four Earth-sized
transits is "16 " at these stellar magnitudes, which is much
higher than the revised detection threshold of 7.5 ". There-
fore, even though solar-like stars may exhibit occasional
transit-like features (as would any random process), the fre-
quency and strength of such features does not significantly
increase the detection threshold that is required to limit the
total number of false alarms over the entire campaign to no
more than one. Thus, natural solar-like variations pose no
threat to the ability of transit photometry to detect planets
as small as Earth, assuming that a sufficient number of tran-
sits is observed.

6. CONCLUSIONS

Determining the frequency of Earth-sized planets orbit-
ing solar-like stars in the Sun’s galactic neighborhood is a
high priority for both NASA and ESA. Several missions
have been proposed with the capability to detect such plan-
ets, including NASA’s Keplermission and ESA’s Eddington
mission. The ability of such missions to achieve their awe-
inspiring goals is limited by the intrinsic variability of solar-
like stars. Currently, the only solar-like star for which data
exist with the high temporal sampling and lowmeasurement
noise required to address this topic is the Sun. Measure-
ments made by the DIARAD instrument on board SOHO
considered here nearly contiguously sample the Sun’s irradi-
ance over nearly half a solar cycle (5.2 yr). We analyzed this
data set using a wavelet-based technique that yields a realiz-
able and near-optimum detector that is efficient and flexible.
Future work will seek to improve the adaptive wavelet
detector by seeking wavelet pairs optimally chosen for the
detection of transit signatures. For example, Chapa & Rao
(2000) provide a method for designing mother wavelets

matched to a given signal. For the overcomplete wavelet
transform, some of the constraints on the wavelets allowing
them to be used in critically sampled applications may be
relaxed, resulting in filters with shorter transition bands
and/or better isolation of transit signatures at a single time-
scale. In addition, more physically realistic models for stel-
lar variability of solar-like stars rotating at arbitrary periods
should be pursued and then analyzed using the methodol-
ogy presented here. A bootstrap analysis of the null statis-
tics for the DIARAD data indicates that the observational
noise for Kepler yields approximately Gaussian detection
statistics. Thus, the required detection threshold and
expected detection probabilities can be reliably estimated,
assuming Gaussian statistics. The results of the analysis
indicate that broadband, white-light photometric variability
of solar-like stars is not an impediment to the detection of
transiting planets, as most of the variability occurs on time-
scales comparable to and longer than the stellar rotation
period, which is much longer than a typical transit. Indeed,
Kepler and Eddington are likely capable of detecting Earth-
sized planets orbiting solar-like stars rotating significantly
faster than the Sun.
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APPENDIX

A MODIFIED BOOTSTRAP ALGORITHM FOR DETERMINING THE DISTRIBUTION OF THE NULL
STATISTICS FOR A TRANSIT SEARCH

Here we outline the computational algorithm used to explore the bootstrap statistics of a search for several transits, given a
time series representing observational noise. This is a necessary step in determining an appropriate detection threshold for a
photometric transit campaign. The goal is to determine what the distribution of the null statistics is for multiple transits from
a knowledge of null statistics corresponding to single-transit events. A direct examination of the multiple-event statistics for a
data set such as from DIARAD is numerically prohibitive. Jenkins et al. (2002) provide a Monte Carlo approach for examin-
ing such distributions, which can be computationally quite intensive. The approach given here allows one to concentrate effi-
ciently on the upper tail of the distribution, which is often of greatest interest. First, assume that the single-event statistics have
been computed and that they have been sorted in descending order. Further assume that the numerator and denominator from
equation (9) have been preserved, so that multiple-event statistics can be computed from the components of the single-event
statistics. Now the bootstrap statistics for a search for L transits consist of forming the multiple-transit statistics for all possi-
ble combinations of L events. For the DIARAD data set, there are "150,000 time steps, for a total of over 4$ 1020 possible
combinations for four transits. Clearly, forming the sample distribution for such a large number of points is out of the ques-
tion. We can, however, sort the single-event statistics and sample the distribution of interest in a practical manner, obtaining a
histogram at any desired resolution.

Note that there is no natural a priori ordering for multiple-event statistics in terms of the component single-event statistics
owing to the manner in which the former are formed from the latter. However, the higher multiple-event statistics will tend to
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be produced by combinations of high single events. Thus, it is possible to examine the bootstrap distribution of the multiple-
event statistics roughly from highest to lowest over a given range of values. We give the example for four transits, but the algo-
rithm can be easily generalized to any number of transits. Begin with a counter set at [1, 1, 1, 1]. This indicates the combination
of four transits each identical to the event with the largest single-event statistic. Here we assume a lower threshold of 6 " for
the range of statistics of interest and a given bin size (51). The multiple-event statistic corresponding to this combination of
the ordered single-event statistics is formed, and the histogram bin containing this statistic is incremented by 1 (the number of
ways to draw this combination of statistics at random). The counter is incremented by one to [1, 1, 1, 2], the corresponding sta-
tistic is formed and the corresponding histogram bin incremented by 4, the number of permutations of this set of digits. This
procedure is continued until a statistic is encountered that is below the lower threshold (of 6 " for this example). At this point,
the second digit (from the right) of the counter is incremented to 2, the first is set to 2: [1, 1, 2, 2], and the procedure is contin-
ued. At any point that a statistic is encountered below 6 ", the next higher digit from the one that was previously incremented
is itself incremented. This criterion prevents the algorithm from needlessly considering multiple-event statistics below the
range of interest (<6 " here). Additionally, the monotonicity of the counter digits is preserved with every increment. In this
way, assuming no lower threshold for skipping combinations, all possible combinations would be considered. At the termina-
tion of the algorithm, the number of events in each bin are divided by the total possible number of combinations of events to
form a histogram of the probability density distribution above 6 ". Note that the resulting histogram will not be accurate in
the neighborhood of the lower threshold, as many statistics that somewhat exceed this bound are not considered because of
the lack of a natural a priori ordering for the multiple-event statistics. Hence, the lower threshold should be set conservatively
below the actual range of interest. For the DIARAD data, reliable results are obtained above"6.25 ". The false-alarm rate as
a function of threshold is obtained by taking 1 minus the cumulative sum of the density histogram and noting that the thresh-
old is the left edge of each histogram bin.

This procedure may still be too taxing in computational terms. For example, assume that the lower threshold is 6 " and that
there are 146,000 single events. Gaussian statistics imply that events greater than this threshold occur with frequency
10$ 10%10. So we would expect the procedure above to terminate after approximately 4:5$ 1011 iterations. In this case, the
procedure can be sped up by sampling, either deterministically or randomly. For deterministic sampling, instead of increment-
ing the counter by 1, it can be incremented by a fixed value greater than 1, say 100. Alternatively, the counter can be incre-
mented by a discrete positive random deviate with a mean of 25, for example. Such deviates can be obtained simply by taking
the nearest integer larger than the product of a uniform random deviate in the interval [0, 1] and twice the desired mean incre-
ment. The resulting histogram must be multiplied by the mean increment value to account for the missing values. For the
examples discussed in x 5, the counter was randomly incremented with a mean increment of 25 and a histogram bin size of
0.1 ".
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